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1. Let n be a positive integer, and let P. denote the set of all polynomials 
73=o aix', aj real. It is known that for every real, finite set C containing at least 

n + 1 points and for every real function f defined on C there exists a unique q E P, 
such that, for every p E Pn, 

( 1 ) max I f(x) - q(x) I < max l f(x) -p(x)l. 
xEC xEC 

Furthermore, the determination of this q can be carried out by known methods in- 
volving arithmetic operations only, and one can even give at the outset an upper 
bound (perhaps large) for the number of the arithmetic operations necessary. For 
instance, the determination of q can be viewed as a linear programming problem. 

2. Let f be a real function defined and continuous on [0, 1]. Consider the problem 
of determining the (unique) p E P. such that for every p E Pn, 

(2) max f (x) -p(x)j ? max If(x) - p(x)j. 
O x_1 OAx_1 

It has been shown [1] that given a positive a, there is a finite subset C of [0, 1] (con- 
taining at least n + 1 points) such that the q E P, satisfying (1) for every p E P. 
is within less than t7 from p throughout [0, 1], i.e., 

max jp(x) - q(x)l < ?7 
Ox_1 

3. Our purpose is to give such a C in a completely closed form, assuming that f 
satisfies a Lipschitz condition (Theorem 2), or has a continuous (n + 1 )st derivative 
(Thereom 1). We make use of de la Vallee Poussin's technique [1], but employ also 
some other results. 

4. THEOREM 1. Let n ( > 1) be an integer, f a real function such that f(n'l) is con- 
tinuous at each point of [0, 1]. Let S.+2 be an arbitrary (n + 2)-point subset of [0, 1], 

P1 = min max If(x) - p(x)j, 
pEPn xESn+2 

and suppose that Pi (for which there is an explict formula, see Remark 1 below) is posi- 
tive. Let At, V, Al and M be numbers such that throughout [0, 1], I f(x) I < A, I f'(x) I _ 
I f (n+1 (x) I < M and 2 [maxo<x<l f(x) - minoi? ff(x)] < V. Let 

n-1 

c = [M/{ pi(n + 1)!}]n(n!)_H 1 - {2p, v(n + 1)!/M}, 
V=o 

n -1 (fn+i) 

U = (n + 2) _ P! [M/14p,(n + 1)!}] 2 

[ vn+J [M/{4p(n n +-1-1/2 

[7 p} H (2 {-i}{ - 
-1 
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V and M are positive since p1 > 0. Also, c is positive as shown below. Let X be an arbi- 
trary positive number. Let E be a positive number such that EV[1 + I U! (1 + E) } ] ? 'q/c 
(for instance, let E be l {cV(1 + U)}-1). Let Ck = [1 + cos (k7r/n)]/2 (k = 0,1, 
... , n). Let C be an arbitrary finite subset of [0, 1] containing I{co, cl, *.. , c"} and 
such that the maximal distance d between two consecutive points of C is smaller or equal to 
piE/(/Li + 4un2). Let p, q be respectively, the elements of Pn such that 

p = max f(x) - p(x) I = min max If(x) -p(x)I, 
O~x?1 PEPn O<X__ 

max I f(x) - q(x) I = min max I f (x) -p (x) |. 
XEC P EPn XEC 

Then maxo<x<l I p(x) -q(x) I < r7. 
REMARK 1. If Sn+2 = {yO, y1, ... yn+1}, with yo < yl ... < Yn+1 then [1] 

n+1 n+1 

(3) P1 = E (-1)vGf(y,) /Z GV) 

where G, = o < a<# yn+J;atv,#O (YO - Ya) (v = 0, 1, * *, n + 1). 
In particular, if yv = v/ (n + 1 ) (v = 0, 1, * , n + 1 ), then from (3) one easily 

obtains 

Pi = + (- 
n 

(_1 ) + ) f (vl(n + 1) ) 

REMARK 2. In connection with the definition of C we note that, as is easily seen, 
the largest distance between two consecutive Ck'S is sin [7r/ (2n)] if n is odd, and is 
{sin (n - 1)7r/(2n)]} sin [7r/(2n)] if n is even. 

5. I-n the proof of Theorem 1 we shall use the following 
LEMMA. Let O ? xo < xi ... <Xn < 1 (n ? 1), and let 

(4) x,,- X'_1 > Hi > 0 (v = 1, 2, 2 n). 

Let j be an integer, 0 < j < n. Let x E [0, 1]. Then 
n - n-1 X 

(5) H I | x-xv |/| xj -xv I < 
tI 
(1 - A) [j! (n j) !6n]. 

v=o,v,:;j V=o 

Proof of the Lemma. (4) clearly implies that 
n 

II Xj - X'V > j! (n -j)! i 
v=o,v,:,j 

Therefore, to prove (5) it suffices to show that 
n n-1 

(6) I X- XI < (1 -v). ,v=o,,^:;j 'V=o 
If x > Xn, then H'V=o|,V J- x I X - ? V= j (1 - A). Similarly, (6) holds if 
x ? xo . Assume now xo < x < Xn . We shall prove 

n n-1 

(7) U I x - x, < (1- v). 
,v0 rvj V=o 
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(a) Suppose 1 < x < 1. Let r (1 ? r < n) be such that Xr1 < X < Xr . Then 
evidently (r - 1)6 < x < 1- (n - r)b. For k = r - 1, r, ... , n - 1, let 

k - n-r 

ak = x + (v + 1-r)6] [i: (1 - v-x) . 
v,=O vP=k+l-r 

If r - 1 < k < n - 1, then 

ak+l/ak = [x + (k + 2 - (k + 1 -r)-x] > 1. 

Consequently, we always have ari ? an-1 . Now 
n ~ r-1 ~ n-r 

IIIX - Xv I ' II (X - A~) II ( 1 - A~ -x) /I x - t v=0,v~~~j v=O __v=O_ 

=a-1//Ix - < an-1/x - 

where is j6 if j < r - 1, and is -(n -j)6 if j r. In the first case 
n-1 

an-1/I x I = x + (V + 1 -r)] (1 -(n -r) - x) 

n-1 n-1 

< H 1- (n- 1-v) (1-(n- 1) -rI (1 - vb) 
-v=O,(n-i- (v=O 

(an "empty" product means 1), which proves (7). In the second case also, 

anJ/| I- 1 = HI x + (v + 1r)b] (1-(n -r)b x)l(l -(n -j) - x) 

n-1 n-1 

- f x + (v +1- r)6 < II (1- ). 
v=O v=O 

(b) Suppose O < x < 2. Let x' = 1- xn,( v = 01,* * ,n). Then 0 < xo' 
<Xi' < ... < Xn- 1X-X_> i>O(=12,**, n). Now 1 -x'< x 

< 1 - xo' and so xo' < 1 - x < Xn1 < 1 - x < 1. Thus, lV=o vX - 
= IIv=OPvnj I X - Xnp J=Ov~n-j -X Xp I < Jj'-o (1 - V6). 

6. Proof of Theorem 1. Let xo, xi, ***, xn+i be points of [0, 1] such that 
0 < xO < x1 ... < xn+15 1 andsuchthatforj = 0, 1, * * * ,n + 1, 

p= If(x) - p(xi) = min max If(x) - p(xi)I. 
PEPn O?j<n+l 

Their existence is well-known [1]. By another well-known theorem [1]* 

(8) xv - x.- > 2p(n + 1) 1/l ? 2pi(n + 1)!/M (v = 1, 2, ... , n + 1), 
and so c > 0. Consider some arbitrary Xk . Let u, v be consecutive points of C such 
that u < Xk < v. Then 

If(Xk) - q(Xk)l ? If(Xk) - f(u) I + I q(xk) - q(u) I + I f(u) - q(u)j 
* In the theorem as given by the text [1] it is required that If(n+) (x) I be strictly 

smaller than M throughout [0, 1]. But it is clear from the proof there, that it is sufficient to 
assume merely that I f(n+i) (X) I< M throughout [0, 1]. 
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Now, clearly I q(x) I < 21 throughout C, and a fortiori throughout { co, c1, *ni , * c. 

Therefore, by a result of Duffin and Schaeffer [2] refining a previous result of A. 
Markoff [3], 1 q'(x) I < 4/n2 throughout [0, 1], and so 

|f(Xk) - q(xk)f < d(A + 4ln2) + P ? EPi + p ? (E + l) p. 

Let 

p= max If(x) -q(x3)l. 
O<j<n+l 

It is known [1] that either f(xi) -p(x) = (-) jp (j = 0, 1, *.., n + 1), or 
f(x1) - p(xj) = -(-l)ip (j = 0,1, ..., n + 1). In the first case let uj = 

(-1)[f(xj) - q(xj)J/p' (j = 0, 1, , n + 1), and in the second case let 
uj -(-1)jf(xj) - q(xj)]/p' (j= 0, 1, ,n + 1). Then [1] 

1 - U1 ? 
1 

Aln 
( Uj <9- E A; | I + e)Aj] where j = II (x - xa) ( 9 ) 0=0__ < a<0 < n+1;acj4s# 

(j=0,1 ..,n+ 1). 

From (8) one easily deduces that 

Ai > [U ! (j+ 1) [2pi(n + 1) !/M 2) (j = 01, * ' *n + 1). 

Also [4] 

A<(1)(nl?1) [{H n+ } {n-U } {Un - -1]1/2 

(j- =01, ., n +1). 

Consequently, for every j, (Zn+l A,)/Aj < U and therefore, by (9), 

1-Uj < 6 U/(1 + E). 

For j = 0, 1, *** ,n+ 1, 

P(xi) - (x1)j = f{f(xj) - q(x) } - {f(xj) -p(xj) } 

up'-pj = P uj(p' - p) -p(l - uj) 

P- p + p(l -Uj) < Ep[l + {U/(1 + E)}I 

_ EV[1 + {U/(1 + E)}] < ?/c. 

By Lagrange's interpolation formula and by the Lemma, for every x E [0, 11, 

p(x) -q(x) 
n n 

= x I P - q-(xi) I - x-x,/ x, -v I, 
j==O P0P 

n -n-1 _/ 

< E ( [qlc) H 1- {2pi (n + 1) [j!(n -j) ! 2p,(n + 1) !/MVn] = 11. 
j=0 P=O 
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7. THEOREM 2. Let n ( ? 1 ) be an integer, f a real function satisfying throughout 

[0, 1], for some constant X, 

X f(x2) -f(xl)l < X I X2-x i. 

Let Sn+2 , P1 , A V have the same meaning as in Theorem 1 and assume p1 > 0. Let 0 be 

an arbitrary number with 0 < 0 < 1. Let R be such that for some polynomial Q (x) with 

real coefficients we have, throughout [0, 1], I f(x) - Q(x)j I 0P1, I Qn+ (x)I < R. (Ex- 

plicit values for such an R, depending on X, Pi , A and 0 only, are given in the proof, where 

we determine also a desirable choice for 0.) Let 

n-1 

c = [R/{pi(1 - 0)(n + 1)!}]n(n!)Y If 1- 2p v(1 - 0) (n + 1) !/R}, 
v=O 

n -1 n+l 

U = (n + 2) [I v! [R/{4p1(1 - 0)(n + 1)!}] 2) 

n+1 n-1 A n A1-1/2 

[{n+1 ,v}{H v7} {H (2v - 1)2v-1} 

V and R are positive since pi > 0. Also, c is positive as shown below. Let X be an arbi- 

trary positive number. Let E and co c c1 , * * * , Cn be defined as in Theorem 1, and let C be 

an arbitrary finite subset of [0, 1] containing I co, * * *, cnI and such that the maximal 

distance d between two consecutive points of C is smaller or equal to EPi/ (X + 4,n2). 

Let p, p, q be defined as in Theorem 1. Then again maxo <x< 1 p (x) - q(x) I < n7. 
Proof. Let xo , xi xn+ be as in the first sentence of the last proof. Let 

P0 = min max Q(xi) - p(x1)l = max I Q(xj) - p*(xj)I (P* C Pn). 
PfEPn O<?jn+l O?j~n+l 

Let Ah be such that maxo<j<n+l I f(xi) - p*(Xj)I = If(Xh) - P*(Xh) We have 

[1] PO > I Q(xh) - p* (Xh)I > f(xh) - p* (Xh)l - f(xh) - Q(xh)I ? p(l - 0), and, 
by the theorem used to derive (8), we have 

xv- x^1 > 2po(n + 1)!/ max I 
Q(n+l) (x) 

(10) O0x<l 

> 2i'i(l - 0)(n ? 1)!/R (v = 1, 2, n + 1). 

So c> 0. 
We shall now give explicitly two numbers, either of which can serve as an R. We 

start by mentioning the following result of Favard [5] and Ahiezer and Krein [6] 

which strengthens a previous result of D. Jackson. Let F (with period 27r) map the 

reals into the reals and satisfy for every real xi , X2 , I F(x2) - F(x1) < L X2 - X1, 

L being a constant. Then for N = 0, 1, 2, * * *, there exists a trigonometric poly- 

nomial TN(X) - =O a, cos (vx) + b( sin (vx) such that 

max I F(x) - TN(X)I < Lr/12(N + 1)}. 
O <x_21r 

From this result one obtains by the method of Jackson [7] that for N = 0,1, 2, 

there exists a PN(X) = ZN=o cv(N)x, Cv(N) being reals, such that 

max I f(x) - PN(X) I ? Xwr/4(N + 1)}. 
Ox_1 
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Let m be the smallest integer N ( >0) such that Xir/{4(N + 1)} ?< op1 , and let 
Q(x) = pm(x). Then throughout [0, 1] we have If(x) - Q(x)l - Opi, Q(x)I 
- + Op, . Therefore, by a theorem of W. Markoff [8], 

n 

max QIna+1'(x){ I 2n+'(, + Opl) J (M2 -v2)/(2v + 1) 
O~x<l V=0 

< 28'(t + pi)[X/(40p)], 2 /H (2 + 1) 
V=O 

which gives two values for an R. 
One can proceed now as in the proof of Theorem 1 (from the first sentence follow- 

ing (8) on), and conclude that max0<x< I p (x) - q(x)I < . 
We finally makethe following remark on the choice of 0. One naturally seeks to 

take d (and therefore e) as large as possible. If we take E = 7q{cV(1 + U)}-1, then 
we are interested in minimizing U, i.e., minimizing R/(1 - 0). Suppose we take 
R = 2"+'(M + 0pi)[Xw/(40pi)]2n+2/flP=o (2v + 1). Then we want to minimize 
(,A + 0p,)6-2n-2/(1 - 0), aid as one easily sees, we have to choose 6 for this purpose 
as the positive root of piX2 + [(2n + 3), - (2n + 1)pl][2(n + 1)K1x - A = 0. 

Aerospace Research Laboratories 
Wright-Patterson Air Force Base, Ohio 

1. CH. DE LA VALLPE POUSSIN, Leqons sur l'Approximation des Fonctions d'une Variable 
Rgelle, Paris, 1919, Chapter VI. 

2. R. J. DUFFIN & A. C. SCHAEFFER, Trans. Amer. Math. Soc., v. 50, 1941, pp. 517-528. 
3. A. MARKOFF, Bull. Acad. Sci. St. Petersburg, v. 62, 1889, pp. 1-24. 
4. I. SCHUR, Math. Z., v. 1, 1918, pp. 377-402. 
5. J. FAVARD, Bull. Sci. Math., v. 61, 1937, pp. 209-224, 243-256. 
6. N. AHIEZER & M. KREIN, Dokl. Akad. Nauk SSSR, v. 15, 1937, pp. 107-112. 
7. D. JACKSON, The Theory of Approximation, Amer. Math. Soc., Providence, R. I., 1930, 

pp. 13-14. 
8. W. MARKOFF' (German translation), Math. Ann., v. 77, 1916, pp. 213-258. 


